干货 | 人工智能如何帮助银行反欺诈:银行智能欺诈风险预测模型研究

银行存管,银行反欺诈,人工智能,风控模型,风险管控

近年来,伴随移动互联网、虚拟现实等技术的飞速发展,银行服务模式日趋多样化。在客户享受灵活便捷服务的同时,银行欺诈风险呈现出更加隐蔽、专业的特点,发展出更多的作案手法和表现形式。传统欺诈检测通常依赖专家规则、黑名单库等方法,已经不能适应新的欺诈挑战。银行亟需研究并应用先进的机器学习算法,以数据价值为驱动建立智能化的风险预测模型,以此作为欺诈风险防范的强力手段。

一、发展趋势

国内外银行在传统反欺诈管理中主要依赖专家经验,通过人工方式制定检测规则,当申请或交易信息与反欺诈规则匹配后即执行相应的业务策略。这种管理模式得出的反欺诈规则存在一定的局限性,不能枚举所有业务场景,无法对各类欺诈行为进行全面覆盖。与此对应,欺诈者会针对性的对已有规则进行回避,导致专家规则处于被动调整的位置,无法跟上欺诈手段的更新换代[1, 2]。另外,当专家规则积累达到一定数量后误报率通常会比较高,能够影响到实际风险决策制定和实际业务开展。

机器学习是一种重要的金融手段,近年来在国内外金融机构和企业中被尝试应用到风险防范、反欺诈……

这篇文章发布很久了,已经被归档请点击阅读更多文章
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
相关推荐
  • 暂无相关文章
  • 评论 抢沙发

    请登录后发表评论