黑科技麦肯锡:超三分之一的东盟公司与AI挂钩,金融、电信、制造业都是宠儿

2017年10月16日

人工智能,人工智能,制造业,工业4.0,机器学习,虚拟教育

近些年,由于数据收集和整合、算法以及计算机处理能力的进步,使得科学家和工程师在开发(AI)方面取得了长足的进步。突然之间,机器已经能够完成那些曾经需要具备人类认知能力才能完成的任务。目前,许多类似这样的“”系统已经投入商业使用。在金融、医疗保健和交通等领域,“机器学习”系统的应用越来越广泛。这些体系已经开始在十个东盟(东南亚国家联盟,英文名称ASEAN)国家产生影响。

由于人工智能技术能够显著提高生产率,它可能会对东南亚地区的经济以及那里的工人产生破坏性影响。之前发布的MGI研究估计,目前已有的人工智能技术有可能使东盟四大经济体现有工作活动的一半走向自动化:印度尼西亚(52%),马来西亚(51%),菲律宾(48%)和泰国(55%)。这些工作目前产生的工资超过9000亿美元。

如果以正确的方式利用AI技术,就有可能为东盟国家带来积极的社会影响。例如,机器学习创新可以改善信用模型,增强金融包容性。人工智能解决方案能够提供新型预防性医疗和远程医疗,协助疾病诊断,还可以加快新药的开发。自适应学习算法可以在实现和个性化教学中发挥作用。为了实现这些用途,东南亚的大部分地区将需要建立基础的数字设施和数据生态系统。

一、人工智能给东南亚带来的机遇和挑战

在世界范围内,人工智能的普及程度往往与数字化程度有关。在东盟,数字化的发展步伐正在不断加快。2011年,只有6%的亚洲大公司在年报中提到“”、“高级分析”、“人工智能”、“机器学习”和“物联网”等术语。到2016年,这个比例已经达到了三分之一,这表明这些技术正在获得动力,并逐渐成为战略重点。

我们发现,在所有行业中,人工智能的早期采用者获得的利润率都高于他们的同行,尤其是在、金融服务、运输业和物流行业。为了巩固市场、消除竞争,大多数这些公司都将这种剩余价值给予了客户。这种“胜者全得”的形势进一步加剧了许多现任者所处的“数字化或者死亡(digitise or die)”的局面。

然而,人工智能的采用并没有实现其最大价值。前期实验和随后的实施需要公司对人工智能如何应用于其核心业务进行前瞻性和广泛的观察,而对于传统的非科技行业的公司来说,后期的实施可能会让人望而却步。到目前为止,高科技、电信和金融服务公司在东盟国家占据优势地位。我们也看到了交通和医疗等公共服务活动的激增,这是由多家政府机构和该地区的“智能城市”计划所推动的。

二、东盟各领域的发展进程

下面我们将研究人工智能在一些特定行业中的应用情况。我们先从两个行业开始,这两个行业占了东盟目前所有人工智能使用案例的一半左右:包括金融、高科技和电信行业。在此之后,我们主要关注制造业和交通运输行业,它们拥有广阔的开发价值,以及两个优先公共服务领域:医疗保健和教育,这些行业都有可能为社会带来举足轻重的收益。

  • 金融服务

到目前为止,东南亚的金融服务公司主要通过人工智能来改善客户体验。例如,马来西亚的丰隆银行利用IBM Watson系统,通过检测顾客在电话中的讲话方式来了解顾客的情绪。总部设在新加坡的星展银行已经开设了数字化银行,它使用虚拟助手来预测和回答客户的问题。在五个东盟国家开展业务的香港创业公司CompareAsiaGroup则利用机器学习技术,将客户与亚洲的金融、通信以及公共事业服务联系起来。

对于人工智能来说,要对一个行业产生广泛、长期的影响,东南亚的这些银行可能需要参考一些人工智能已经在美国和中国成功应用的实例。将人工智能应用于诸如信用评分、动态定价和数字营销等功能,在许多地方已经表现了其价值,但很少有公司在东盟扩大此类应用的规模。要想抓住这一机遇,银行需要不断开发新的技能,初创企业也要不断的创新。当然了,首先,这些企业必须加快其基本的数字化步伐。

客户互动实现数字化,以及建立数据收集、管理和分析流程都是需要优先处理的事项,因为人工智能的工具需要大量的数据。已经完成这种数字化转型的商业案例进一步强化了这样一个事实,如东盟的中产阶级消费者,他们是消费者基础的核心,他们可以使用数字技术,他们也经常会在网上购物,选择自己满意的商品。

政府监管机构可以决定金融科技公司进行创新的步伐,随着时间的推移,也可能会开放银行平台,保证各公司在数据访问上公平竞争。在数据可用性和隐私之间制定经过仔细权衡的规定是至关重要的,就像印度的Aadhaar(生物身份识别系统)一样。官员们可能会选择允许人工智能技术在可控环境中测试数据。

  • 高科技和电信行业

高科技和电信公司是人工智能技术的早期使用者,这一点也不奇怪。当地的电信公司已处于领先地位,因为它们可以利用自己广泛的人口覆盖率和获取数据的渠道,到2020年,新兴国家90%的成年人将使用手机订阅服务。

电信公司一直以来都会使用分析工具来预测客户流失情况,以及一些长时间的额外服务交叉销售的情况。但现在的可能性要大得多——包括进入全新类型的市场的机会。今天没有银行账户的人可以通过移动设备得到基本的金融服务,而他们的交易产生的数据可以为银行识别保险和贷款等其他金融服务的潜在客户奠定基础。

电信公司也在利用人工智能进入其他行业。新加坡电信(Singtel)建立了一个数据分析子公司,对购物者的数据进行收集、建模和可视化处理,而印度电信的分析部门则专注于零售商的数字营销和银行的信用评分。东盟还推动了小型高科技创业公司的崛起,这些创业公司受到不断壮大的风险投资生态系统的支持。

  • 制造业

人工智能技术将在该行业下一阶段的发展中扮演重要角色。企业将很快能够实时管理工厂车间,并将整个价值链与无缝数据流连接起来,从而实现实时决策并提高生产效率。这个数字化制造的新世界通常被称为工业4.0。

在东盟国家,采用人工智能和物联网是一个自然而然的过程。该地区最大的几家公司可能会成为领头羊,因为他们的商业规模已经涉及到了潜在利益最大的领域。泰国食品和饮料集团ThaiBev和马来西亚汽车制造商Proton只是其中的两个主要品牌,旨在将工业4.0技术引入他们的工厂。

2016年,该地区的风险投资总额达到26亿美元,比前一年增长了约60%。此外,经济发展滞后和社会问题日益增多,为技术驱动的解决方案的发展提供了机会。许多科技创业者都在开发人工智能技术,并将其应用于本地的实例中。这些地区性的创业公司并没有国际科技巨头所喜欢的资源或人才库,但它们也说明了在当地寻找市场机会和设计本地相关商业模式的重要性。

  • 运输和物流

快速的城市化正在给世界各地城市的交通系统带来压力。而且要解决这个问题代价高昂:仅在亚洲,交通拥堵的直接成本约为GDP的2%-5%。世界上大多数主要城市都在努力解决与快速城市化有关的问题,他们规划了智能城市蓝图,旨在整合人工智能和物联网,通过以“智能”方式管理基础设施来提高网络效率。

新加坡是东盟在执行其“智能移动2030”计划时的领先者,该计划要求人工智能系统做到实时管理列车、公交车、汽车和自行车交通。马来西亚的雪兰莪州也在推行类似的计划,以及印度尼西亚、菲律宾和柬埔寨的智能城市项目也正在进行中。

初创科技公司正在成为这一领域的重要组成部分。Yogee网销售使用了机器学习技术的灵活管理软件,因此它变得更加智能,使用的范围更广。在7个东盟国家运营的叫车平台Grab,已聘用了200名工程师和数据科学家,专注于利用人工智能改善客户服务,并进一步优化其司机队伍。

城市政府面临的紧迫挑战是与战略行业参与者和科技创业公司建立合作关系。然而,这些合作的整合是相对复杂的。当然,城市的净效益是显而易见的,比如减少拥堵和提高了安全性。但要调整私人投资和公共奖励的激励机制是很有挑战性的。此外,大多数东盟国家都专注于自动收费站,而且对大型公共投资兴趣不大。尽管面临诸多挑战,但在过度拥挤的东南亚城市中改善生活的主要潜力,使得建立高效的公私伙伴关系变得至关重要。

  • 医疗保健

在东盟,病人护理领域广泛采用人工智能的做法还需要数年时间,但现在已经出现了几个成功的例子。新加坡政府机构IHiS(集成健康信息系统)旨在创建一个全国性的企业分析平台,汇集和分析来自多个医疗保健系统的患者数据,并生成有助于改善治疗结果的见解。通过提供在线医生咨询和可穿戴式传感器引导的家庭诊断,这可能会使管理慢性病变得可行。其次的好处包括尽量减少事故和急诊单位的过度拥挤,以及减少病人的医疗费用。

拥有大量人口但没有足够多的医生和专家的国家将从这些技术中获益最多。IBM的“沃森”也许可以在印尼提供服务。2014年,印尼只有41名放射肿瘤学专家,却要为2.5亿人提供治疗,而且这个国家这一年因癌症死亡近20万人。

然而,该地区没有足够的整合数据来支持先进的分析技术,更不用说人工智能了。医院有数据,但通常是以纸质形式来记录的,想要共享比较困难。大多数东盟国家要求数据不可以留出国外,这就限制了建立区域性数据库的机会。更重要的是,将病人数据集中在一起,并将其开放给机器学习,即使是以匿名的形式,或者将使用可穿戴设备的要求捆绑到保险折扣上,也可能与隐私规范和法律不一致。

  • 教育

教育科技已经是一个蓬勃发展的领域,为人工智能扎根提供了肥沃的土壤。与金融科技一样,教育科技也迎合了一个巨大的市场:全球教育支出占全球GDP的近5%。投资者注意到,一家投资银行预测,到2020年,教育科技投资将增长至2500亿美元。

一些科学技术已经在东盟地区得到采用。新加坡和马来西亚的大学已经试验了预测软件,以指导能够防止辍学的干预措施。但是,东盟还有很长的一段路要走,才能对其产生重大影响。大多数成员国都没有收集能让人工智能算法得出结论并做出预测的综合数据。该地区的许多地区也缺乏关键的IT基础设施。2016年,只有不到一半的亚洲人口使用互联网,其中包括大多数东盟国家的多数人口。

东盟国家可以首先利用现有技术,更易于实施的方法,以改善教育的质量和公平性。像可汗学院或马来西亚亚洲电子大学这样的在线自学课程提高了入学的机会。通过配备预装材料和低带宽通道的设备,在偏远地区或缺乏熟练教师的地方,教育质量和公平性得到了改善。

这些工具并不能保证更好的教育成果。政策制定者和地方行政官员必须调整政策,以满足学生的实际需求,并切实地考虑基础设施的准备和规划。教育科技解决方案应该专注于教学,将技术解决方案与现场教学的优势结合起来,并与本地适用的课程相匹配。建立一项能够评估国家系统可行性和性能的教育科技政策,将允许各国在时机成熟的时候充分利用人工智能。

This entry was posted in 人工智能 and tagged , , , , . Bookmark the permalink.

发表评论

电子邮件地址不会被公开。 必填项已用*标注